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Abstract

The purpose of this paper is to utilize the numerical assembly method (NAM) to determine the exact natural frequencies

and mode shapes of the multispan Timoshenko beam carrying a number of various concentrated elements including point

masses, rotary inertias, linear springs, rotational springs and spring–mass systems. First, the coefficient matrices for an

intermediate pinned support, an intermediate concentrated element, left- and right-end support of a Timoshenko beam are

derived. Next, the overall coefficient matrix for the whole structural system is obtained using the numerical assembly

technique of the finite element method. Finally, the exact natural frequencies and the associated mode shapes of the

vibrating system are determined by equating the determinant of the last overall coefficient matrix to zero and substituting

the corresponding values of integration constants into the associated eigenfunctions, respectively. The effects of

distribution of in-span pinned supports and various concentrated elements on the dynamic characteristics of the

Timoshenko beam are also studied.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

A beam being short in length relative to its transverse dimensions or a long beam vibrating in a higher mode
so that the nodal points are close together, a deformation due to the shear stress occurs in the beam except that
it is subjected only to the pure bending moment. In such situation, it is necessary to use the full Timoshenko
theory of beam deformation. Many researchers [1–4] studied the vibration problems of a cantilever
Timoshenko beam with a tip body at its free end. Maurizi and Bellés [5] studied the natural frequencies of the
beam–mass system of a simply supported uniform Timoshenko beam. Abramovich and Hamburger [6]
studied the vibration of a uniform cantilever Timoshenko beam with translational and rotational springs and
with a tip mass. Rossi et al. [7] studied the free vibration of Timoshenko beams carrying elastically mounted,
concentrated masses. Posiadala [8] studied the free vibrations of uniform Timoshenko beams with attachments
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

A cross-sectional area of the beam
E Young’s modulus of the beam
G shear modulus of the beam
I moment of inertia of cross-sectional area

A of the beam
j

ffiffiffiffiffiffiffi
�1
p

Jv rotary inertia of lumped mass mv at the
vth station

k0 shear coefficient
kRv rotational spring constant at the vth

station
kTv translational (linear) spring constant at

the vth station
keu spring constant of the spring–mass sys-

tem at the uth station
L total length of the beam
m mass per unit length of the beam
mv lumped mass at the vth station
meu lumped mass of the spring–mass system

at the uth station
n total number of intermediate stations
q total number of equations for the inte-

gration constants
r total number of intermediate pinned

supports

Rg radius of gyration of cross-sectional area
AðRg ¼

ffiffiffiffiffiffiffiffiffi
I=A

p
Þ

u total number of intermediate spring–
mass systems

v total number of intermediate concen-
trated elements

xu axial coordinate of station u

y(x, t) transverse displacement at position x and
time t for the beam

Y amplitude function of y(x, t)
zu(t) instantaneous displacement for lumped

mass meu of the spring–mass system at
the uth station (relative to its static
equilibrium position)

€zu acceleration of zu(t)
Zu amplitude of zu(t)
r mass density of the beam
j(x, t) bending slope at position x and time t

oeu natural frequency of the spring–mass
system at the uth station (with respect
to the static beam)

oTi ith natural frequency of Timoshenko
beam

oEi ith natural frequency of Euler–Bernoulli
beam

Oi dimensionless frequency parameter cor-
responding to the ith vibration mode
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by means of the Lagrange multiplier approach. Hong and Kim [9] proposed an exact modal analysis of
multispan beam-type structure supported and/or connected by resilient joints with damping by means of the
spatial domain Laplace transform. Gürgöze [10–12] presented the eigenfrequencies of a cantilever beam with
attached tip mass and a spring–mass system and those of a cantilever beam with several spring–mass systems.
Wu and Chen [13] presented a modified lumped-mass transfer matrix method for the free vibration analysis of
a multistep Timoshenko beam carrying eccentric lumped masses with eccentricity and rotary inertias. Wu and
Chen [14] obtained the exact solution of a single-span uniform Timoshenko beam carrying any number of
spring–mass systems by using NAM. Lin and Tsai determined the exact values of natural frequencies and
associated mode shapes of a ‘‘multispan’’ uniform beam carrying multiple spring–mass systems [15] and those
of a multiple-step beam carrying a number of intermediate lumped masses and rotary inertias [16] with the
NAM. From the foregoing literature review, one finds that the literature regarding determination of exact
natural frequencies and mode shapes of a ‘‘multispan’’ Timoshenko beam carrying multiple various
concentrated elements is little. Therefore, the objective of this paper is to extend the theory of NAM to
investigate the free vibration characteristics of a multispan Timoshenko beam carrying multiple point masses,
rotary inertias, linear springs, rotational springs and spring–mass systems.
2. Equation of motion and displacement function

Fig. 1 shows the sketch of a uniform beam supported by r pins, carrying u spring–mass systems and v

various concentrated elements. If each of the points that the r intermediate pinned supports, the u spring–mass
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Fig. 1. Sketch for a uniform Timoshenko beam supported by r intermediate pins, carrying u spring–mass systems and v various

concentrated elements.
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systems or the v concentrated elements located is called a ‘‘station,’’ then the total number of intermediate
stations is n.

Considering the effects of shear deformation and rotary inertia, the equation of motion for a uniform beam
is given by [17]

EI
q2jðx; tÞ

qx2
þ k0GA

qyðx; tÞ

qx
� jðx; tÞ

� �
� R2

gm
q2jðx; tÞ

q2t
¼ 0 (1)

m
q2yðx; tÞ

qt2
� k0AG

q2yðx; tÞ
qx2

�
qjðx; tÞ

qx

� �
¼ 0 (2)

where E is Young’s modulus, A is the cross-sectional area, I is the moment of inertia of the cross-sectional area
A about the axis of bending, k0 is the shear coefficient, G is the shear modulus and r is the mass density of the
beam material, m ¼ rA is mass per unit length of the beam, Rg ¼

ffiffiffiffiffiffiffiffiffi
I=A

p
is radius of gyration of cross-

sectional area A, y(x, t) is the transverse deflection of the beam at position x and time t and j(x, t) is the
bending slope.

Eqs. (1) and (2) are referred to as the Timoshenko beam equations and can be decoupled as follows:

EI
q4yðx; tÞ

qx4
þm

q2yðx; tÞ

q2t
�mR2

g 1þ
E

k0G

� �
q4yðx; tÞ

q2xq2t
þ

m2R2
g

k0AG

 !
q4yðx; tÞ

qt4
¼ 0 (3)

EI
q4jðx; tÞ

qx4
þm

q2jðx; tÞ

q2t
�mR2

g 1þ
E

k0G

� �
q4jðx; tÞ

q2xq2t
þ

m2R2
g

k0AG

 !
q4jðx; tÞ

qt4
¼ 0 (4)

Free vibration of the beam takes the form

yðx; tÞ ¼ Y ðxÞ ejot (5)

jðx; tÞ ¼ CðxÞ ejot (6)

where Y ðxÞ and CðxÞ are the amplitude functions of y(x, t) and j(x, t), respectively, o is natural frequency of
the whole vibrating system and j ¼

ffiffiffiffiffiffiffi
�1
p

.
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Substituting Eqs. (5) and (6) into Eqs. (3) and (4), respectively, one obtains

Y
0000
þ ðaþ bÞY

00
� ðc� abÞY ¼ 0 (7)

C
0000
þ ðaþ bÞC

00
� ðc� abÞY ¼ 0 (8)

where

a ¼
mo2

k0AG
; b ¼

rIo2

EI
; c ¼

mo2

EI
(9a2c)

The general solutions of Eqs. (7) and (8) take the forms

Y ðxÞ ¼ C1 sinðl1xÞ þ C2 cosðl1xÞ þ C3 sinhðl2xÞ þ C4 coshðl2xÞ (10)

CðxÞ ¼ C01 sinðl1xÞ þ C02 cosðl1xÞ þ C03 sinhðl2xÞ þ C04 coshðl2xÞ (11)

where Cp and C0p (p ¼ 1, 2, 3, 4) are the integration constants, and

l1 ¼ 1
2
½4cþ ða� bÞ2�1=2 þ 1

2
ðaþ bÞ

n o1=2
(12a)

l2 ¼ 1
2½4cþ ða� bÞ2�1=2 � 1

2ðaþ bÞ
n o1=2

(12b)

The substitution of Eqs. (5), (6), (10) and (11) into Eq. (1) gives

1�
rIo2

k0AG

� �
½C01 sinðl1xÞ þ C02 cosðl1xÞ þ C03 sinhðl2xÞ þ C04 coshðl2xÞ�

�
EI

k0AG
½�C01l

2
1 sinðl1xÞ � C02l

2
1 cosðl1xÞ þ C03l

2
2 sinhðl2xÞ þ C04l

2
2 coshðl2xÞ�

¼ C1l1 cosðl1xÞ � C2l1 sinðl1xÞ þ C3l2 coshðl2xÞ þ C4l2 sinhðl2xÞ (13)

C01 ¼ �a1C2; C02 ¼ a1C1; C03 ¼ a2C4; C04 ¼ a2C3 (14a2d)

where

a1 ¼
l1

½1� ðrIo2=k0AGÞ� þ ðEI=k0AGÞl21
; a2 ¼

l2
½1� ðrIo2=k0AGÞ� � ðEI=k0AGÞl22

(15a,b)

3. Determination of coefficient matrices for the stations located by pin supports, concentrated elements

and beam ends

For an arbitrary station located at xs (cf. Fig. 1), from Eqs. (10) and (11) one obtains

Y sðxsÞ ¼ Cs;1 sinðl1xsÞ þ Cs;2 cosðl1xsÞ þ Cs;3 sinhðl2xsÞ þ Cs;4 coshðl2xsÞ (16)

CsðxsÞ ¼ Cs;1a1 cosðl1xsÞ � Cs;2a1 sinðl1xsÞ þ Cs;3a2 cosh ðl2xsÞ þ Cs;4a2 sinhðl2xsÞ (17)

Y 0sðxsÞ ¼ Cs;1l1 cosðl1xsÞ � Cs;2l1 sinðl1xsÞ þ Cs;3l2 coshðl2xsÞ þ Cs;4l2 sinhðl2xsÞ (18)

C
0

sðxsÞ ¼ �Cs;1a1l1 sinðl1xsÞ � Cs;2a1l1 cosðl1xsÞ þ Cs;3a2l2 sinhðl2xsÞ þ Cs;4a2l2 coshðl1xsÞ (19)

where the primes refer to differentiation with respect to the coordinate x.
If the station numbering corresponding to the intermediate spring–mass system is represented by u, then the

continuity of deformations and equilibrium of moments and forces require that

Y
L

u ðxuÞ ¼ Y
R

u ðxuÞ (20)
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C
L

u ðxuÞ ¼ C
R

u ðxuÞ (21)

C
0L

u ðxuÞ ¼ C
0R

u ðxuÞ (22)

k0AG½C
L

u ðxuÞ � Y
0L

u ðxuÞ� þ Fn

uY ðxuÞ ¼ k0AG½C
R

u ðxuÞ � Y
0R

u ðxuÞ� (23)

Fn

u ¼
meuo2

1� ðo=oeuÞ
2

(24)

In Eqs. (20)–(23), the superscripts ‘‘L’’ and ‘‘R’’ refer to the left-hand and right-hand side of station u,
respectively.

The equation of motion for the intermediate spring–mass system of uth station is given by

meu €zu þ keuðzu � yuÞ ¼ 0 (25)

Free vibration of the spring–mass system takes the form

zuðtÞ ¼ Zu e
jot (26)

with Zu denoting the amplitude of z(t), then the substitution of Eqs. (5) and (25) into Eq. (24) gives

Y uðxuÞ þ ½ðo=oeuÞ
2
� 1�Zu ¼ 0 (27)

oeu ¼
keu

meu

� �1=2

(28)

where meu and keu denote the point mass and spring constant of the spring–mass system of uth station,
respectively, zu and €zu denote the displacement and acceleration of the spring mass (meu) relative to its static
equilibrium position, and oeu defined by Eq. (28) denotes the natural frequency of the spring–mass system
with respect to the static beam.

Substituting Eqs. (16)–(19) into Eqs. (20)–(23) and (27), respectively, one obtains

Cu;1 sinðl1xuÞ þ Cu;2 cosðl1xuÞ þ Cu;3 sinhðl2xuÞ þ Cu;4 coshðl2xuÞ

� Cuþ1;1 sinðl1xuÞ � Cuþ1;2 cosðl1xuÞ � Cuþ1;3 sinhðl2xuÞ � Cuþ1;4 coshðl2xuÞ ¼ 0 (29)

Cu;1a1 cosðl1xuÞ � Cu;2a1 sinðl1xuÞ þ Cu;3a2 coshðl2xuÞ þ Cu;4a2 sinhðl2xuÞ

� Cuþ1;1a1 cosðl1xuÞ þ Cuþ1;2a1 sinðl1xuÞ � Cuþ1;3a2 coshðl2xuÞ � Cuþ1;4a2 sinhðl2xuÞ ¼ 0 (30)

� Cu;1a1l1 sinðl1xuÞ � Cu;2a1l1 cosðl1xuÞ þ Cu;3a2l2 sinhðl2xuÞ þ Cu;4a2l2 coshðl2xuÞ

þ Cuþ1;1a1l1 sinðl1xuÞ þ Cuþ1;2a1l1 cosðl1xuÞ � Cuþ1;3a2l2 sinhðl2xuÞ � Cuþ1;4a2l2 coshðl2xuÞ ¼ 0 (31)

k0AG½Cu;1a1 cosðl1xuÞ � Cu;2a1 sinðl1xuÞ þ Cu;3a2 coshðl2xuÞ þ Cu;4a2 sinhðl2xuÞ

� Cu;1l1 cosðl1xuÞ þ Cu;2l1 sinðl1xuÞ � Cu;3l2 coshðl2xuÞ � Cu;4l2 sinhðl2xuÞ�

þ F�u½Cu;1 sinðl1xuÞ þ Cu;2 cosðl1xuÞ þ Cu;3 sinhðl2xuÞ þ Cu;4 coshðl2xuÞ�

� k0AG½Cuþ1;1a1 cosðl1xuÞ � Cuþ1;2a1 sinðl1xuÞ þ Cuþ1;3a2 coshðl2xuÞ þ Cuþ1;4a2 sinhðl2xuÞ

� Cuþ1;1l1 cosðl1xuÞ þ Cuþ1;2l1 sinðl1xuÞ � Cuþ1;3l2 coshðl2xuÞ � Cuþ1;4l2 sinhðl2xuÞ� ¼ 0 (32)

Cu;1 sinðl1xuÞ þ Cu;2 cosðl1xuÞ þ Cu;3 sinhðl2xuÞ þ Cu;4 coshðl2xuÞ þ ½ðo=oeuÞ
2
� 1�Zu ¼ 0 (33)

Writing Eqs. (29)–(33) in matrix form, one obtains

Bu½ � Cuf g ¼ 0 (34)
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where

Cuf g ¼ Cu;1 Cu;2 Cu;3 Cu;4 Cuþ1;1 Cuþ1;2 Cuþ1;3 Cuþ1;4 Zu

n o
(35)

and the coefficient matrix [Bu] is given by Eq. (A.1) in Appendix A at the end of this paper. In Eq. (34), the
symbols, [ ] and {}, denote the rectangular matrix and column vector, respectively.

If the station numbering corresponding to the intermediate concentrated elements (including point masses,
rotary inertias, linear springs and rotational springs) is represented by v, then the continuity of deformations
and equilibrium of moments and forces require that

Y
L

v ðxvÞ ¼ Y
R

v ðxvÞ (36)

C
L

v ðxvÞ ¼ C
R

v ðxvÞ (37)

EIC
0R

v ðxvÞ � ðJvo2 � kRvÞC
L

v ðxvÞ ¼ EIC
0R

v ðxvÞ (38)

k0AG½C
L

v ðxvÞ � Y
0L

v ðxvÞ� þ ðmvo2 � kTvÞY
L

v ðxvÞ ¼ k0AG½C
R

v ðxvÞ � Y
0R

v ðxvÞ� (39)

Substituting Eqs. (16)–(19) into Eqs. (36)–(39), respectively, one obtains

Cv;1 sinðl1xvÞ þ Cv;2 cosðl1xvÞ þ Cv;3 sinhðl2xvÞ þ Cv;4 coshðl2xvÞ

� Cvþ1;1 sinðl1xvÞ � Cuþ1;2 cosðl1xvÞ � Cvþ1;3 sinhðl2xvÞ � Cvþ1;4 coshðl2xvÞ ¼ 0 (40)

Cv;1a1 cosðl1xvÞ � Cv;2a1 sinðl1xvÞ þ Cv;3a2 coshðl2xvÞ þ Cv;4a2 sinhðl2xvÞ

� Cvþ1;1a1 cosðl1xvÞ þ Cvþ1;2a1 sinðl1xvÞ � Cvþ1;3a2 coshðl2xvÞ � Cvþ1;4a2 sinhðl2xvÞ ¼ 0 (41)

EI ½�Cv;1a1l1 sinðl1xvÞ � Cv;2a1l1 cosðl1xvÞ þ Cv;3a2l2 sinhðl2xvÞ þ Cv;4a2l2 coshðl2xvÞ�

� ðJo2 � kRvÞ½Cv;1a1l1 cosðl1xvÞ � Cv;2a1l1 sinðl1xvÞ þ Cv;3a2l2 coshðl2xvÞ þ Cv;4a2l2 sinhðl2xvÞ�

þ EI ½Cvþ1;1a1l1 sinðl1xvÞ þ Cvþ1;2a1l1 cosðl1xvÞ � Cvþ1;3a2l2 sinhðl2xvÞ � Cvþ1;4a2l2 coshðl2xvÞ� ¼ 0 (42)

k0AG½Cv;1a1 cosðl1xvÞ � Cv;2a1 sinðl1xvÞ þ Cv;3a2 coshðl2xvÞ þ Cv;4a2 sinhðl2xvÞ

� Cv;1l1 cosðl1xvÞ þ Cv;2l1 sinðl1xvÞ � Cv;3l2 coshðl2xvÞ � Cv;4l2 sinhðl2xvÞ�

þ ðmvo2 � kTvÞ½Cv;1 sinðl1xvÞ þ Cv;2 cosðl1xvÞ þ Cv;3 sinhðl2xvÞ þ Cv;4 coshðl2xvÞ�

� k0AG½Cvþ1;1a1 cosðl1xvÞ � Cvþ1;2a1 sinðl1xvÞ þ Cvþ1;3a2 coshðl2xvÞ þ Cvþ1;4a2 sinh ðl2xvÞ

� Cvþ1;1l1 cosðl1xvÞ þ Cvþ1;2l1 sinðl1xvÞ � Cvþ1;3l2 coshðl2xvÞ � Cvþ1;4l2 sinhðl2xvÞ� ¼ 0 (43)

Writing Eqs. (41)–(43) in matrix form, one obtains

Bv½ � Cvf g ¼ 0 (44)

where

Cvf g ¼ Cv;1 Cv;2 Cv;3 Cv;4 Cvþ1;1 Cvþ1;2 Cvþ1;3 Cvþ1;4

n o
(45)

and the coefficient matrix [Bv] is given by Eq. (A.3) in Appendix A at the end of this paper.
Similarly, if the station numbering corresponding to the intermediate pinned–support is represented by r,

then the continuity of deformations and equilibrium of moments require that

Y
L

r ðxrÞ ¼ Y
R

r ðxrÞ ¼ 0 (46,47)

C
L

r ðxrÞ ¼ C
R

r ðxrÞ (48)

C
0L

r ðxrÞ ¼ C
0R

r ðxrÞ (49)
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Substituting Eqs. (16)–(19) into Eqs. (46)–(49), respectively, one obtains

Cr;1 sinðl1xrÞ þ Cr;2 cosðl1xrÞ þ Cr;3 sinhðl2xrÞ þ Cr;4 coshðl2xrÞ ¼ 0 (50)

Crþ1;1 sinðl1xrÞ þ Crþ1;2 cosðl1xrÞ þ Crþ1;3 sinhðl2xrÞ þ Crþ1;4 coshðl2xrÞ ¼ 0 (51)

Cr;1a1 cosðl1xrÞ � Cr;2a1 sinðl1xrÞ þ Cr;3a2 coshðl2xrÞ þ Cr;4a2 sinhðl2xrÞ

� Crþ1;1a1 cosðl1xrÞ þ Crþ1;2a1 sinðl1xrÞ � Crþ1;3a2 coshðl2xrÞ � Crþ1;4a2 sinhðl2xrÞ ¼ 0 (52)

� Cr;1a1l1 sinðl1xrÞ � Cr;2a1l1 cosðl1xrÞ þ Cr;3a2l2 sinhðl2xrÞ þ Cr;4a2l2 coshðl2xrÞ

þ Crþ1;1a1l1 sinðl1xrÞ þ Crþ1;2a1l1 cosðl1xrÞ � Crþ1;3a2l2 sinhðl2xrÞ � Crþ1;4a2l2 coshðl2xrÞ ¼ 0 (53)

Writing Eqs. (50)–(53) in matrix form, one obtains

Br½ � Crf g ¼ 0 (54)

where

Crf g ¼ Cr;1 Cr;2 Cr;3 Cr;4 Crþ1;1 Crþ1;2 Crþ1;3 Crþ1;4

n o
(55)

and the coefficient matrix [Br] is given by Eq. (A.5) in Appendix A at the end of this paper.
If the left-end support of the beam is pinned as shown in Fig. 1, then the boundary conditions are

Y 0ð0Þ ¼ C00ð0Þ ¼ 0 (56,57)

From Eqs. (16), (19) and (56), (57) one obtains

C0;2 þ C0;4 ¼ 0 (58)

�C0;2a1l1 þ C0;4a2l2 ¼ 0 (59)

or in matrix form

B0½ � C0f g ¼ 0 (60)

where

1 2 3 4

B0½ � ¼
0 1 0 1

0 �a1l1 0 a2l2

" #
1

2
(61)

C0f g ¼ C0;1 C0;2 C0;3 C0;4

n o
(62)

If the right-end support of the beam is pinned as shown in Fig. 1, then the boundary conditions are

Y N ðLÞ ¼ C0NðLÞ ¼ 0 (63,64)

N ¼ nþ 1 (65)

From Eqs. (16), (19), (63) and (64), one obtains

CN ;1 sinðl1LÞ þ CN ;2 cosðl1LÞ þ CN;3 sinhðl2LÞ þ CN ;4 coshðl2LÞ ¼ 0 (66)

�CN ;1a1l1 sinðl1LÞ � CN;2a1l1 cosðl1LÞ þ CN ;3a2l2 sinhðl2LÞ þ CN ;4a2l2 coshðl2LÞ ¼ 0 (67)

or in matrix form

BN½ � CNf g ¼ 0 (68)
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where

4N � 3 4N � 2 4N � 1 4N

BN½ � ¼
sinðl1LÞ cosðl1LÞ sinhðl2LÞ coshðl2LÞ

�a1l1 sinðl1LÞ �a1l1 cosðl1LÞ a2l2 sinhðl2LÞ a2l2 coshðl2LÞ

" #
q� 1

q
(69)

CNf g ¼ CN;1 CN;2 CN ;3 CN ;4

n o
(70)

where q denotes the total number of equations for the integration constants given by

q ¼ 4ðvþ rÞ þ 5uþ 4 (71)

From the next Eq. (72), one sees that the overall coefficient matrix ½B� is a square matrix having q rows and q

columns. Among the q� q coefficients of ½B�, Bab (a ¼ 1, 2,y,q and b ¼ 1, 2,y,q), the contribution of the
sub-matrix [B0] given by Eq. (61) is given by Bkl ¼ B0kl with k ¼ 1, 2 and l ¼ 1, 2, 3, 4. In other words, digits 1,
2, 3 and 4 on top side of [B0] and those 1 and 2 on right-hand side of [B0] represent the identification numbers
for the associated elements of the coefficient sub-matrix [B0] for achieving the overall coefficient matrix ½B� by
using the numerical assembly technique as done by the conventional finite element method (FEM). It is
evident that, for the specified values of N and q, the digits determined by 4N�3, 4N�2, 4N�1 and 4N, shown
on top side of [BN], and those determined by q�1 and q, shown on right-hand side of [BN], represent the
identification numbers for the associated elements of the coefficient sub-matrix [BN].

4. Determination of natural frequencies and mode shapes of the beam

The integration constants relating to the left- and right-end supports of the beam are defined by Eqs. (62)
and (70), respectively, while those relating to the intermediate stations are defined by Eqs. (35), (45) and/or
(55) depending upon point mass, rotary inertia, linear spring, rotational spring, spring–mass system and/or
rigid (pinned) support being located there. The associated coefficient matrices are given by [B0] (cf. Eq. (61)),
[Bu] (cf. Eq. (A.1) of Appendix A), [Bv] (cf. Eq. (A.3) of Appendix A), [Br] (cf. Eq. (A.5) of Appendix A) and
[BN] (cf. Eq. (69)). From the last equations concerned one may see that the identification numbers for each
element of the last coefficient matrices are shown on the top side and right-hand side of each matrix.
Therefore, using the numerical assembly technique as done by the conventional FEM one may obtain a matrix
equation for all the integration constants of the entire beam

B
� �

C
� �
¼ 0 (72)

Non-trivial solution of Eq. (72) requires that its coefficient determinant is equal to zero, i.e.,

B
		 		 ¼ 0 (73)

Which is the frequency equation for the present problem.
In this paper, the incremental search method is used to find the natural frequencies of the vibrating system,

oi (i ¼ 1, 2,y). For each natural frequency oi, one may obtain the corresponding integration constants from
Eq. (72). The substitution of the last integration constants into the displacement functions of the associated
beam segments will determine the corresponding mode shape of the entire beam, Y(i)(X).

5. Numerical results and discussions

Before the free vibration analysis of a multispan Timoshenko beam carrying multiple concentrated elements
is performed, the reliability of the theory and the computer program developed for this paper are confirmed
by comparing the present results with those obtained from the conventional FEM. In FEM, the two-node
beam elements are used and the entire beam is subdivided into 80 beam elements. Since each node has two
degrees of freedom (dofs), the total dof for the entire unconstrained beam is 162. The dimensions of the
Timoshenko beam studied in this paper are (cf. Fig. 1): the total length is L ¼ 1.0m; the mass density is
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Fig. 2. Sketch for a pinned–pinned beam carrying three point masses, two rotary inertias, two linear springs, one rotational spring and one

mass–spring system.

Table 1

The lowest five natural frequencies of the beam shown in Fig. 2 carrying three point masses, two rotary inertias, two linear springs, one

rotational spring and one mass–spring system

Type of beam Methods Natural frequencies, oXi (rad/s)

oT1 or oE1 oT2 or oE2 oT3 or oE3 oT4 or oE4 oT5 or oE5

Type I

Timoshenko beam Present 343.5143 791.2395 2476.9018 4777.2470 6465.0813

FEM 343.5144 791.2397 2476.9059 4777.2633 6465.1220

Euler–Bernoulli beam Present 343.5574 794.4713 2535.9428 4957.8052 6751.0220
a(%) (0.0125) (0.4084) (2.3837) (3.7795) (4.4228)

FEM 343.5577 794.4716 2535.9430 4957.8055 6751.0235

Type II

Timoshenko beam Present 686.7688 1563.8251 4647.742 8663.0645 11614.2554

FEM 686.7688 1563.8267 4647.7791 8663.2195 11614.5446

Euler–Bernoulli beam Present 687.1147 1588.9425 5071.8856 9915.6103 13502.0439
a(%) (0.0503) (1.6062) (9.1258) (14.458) (16.254)

FEM 687.1154 1588.9433 5071.8860 9915.6110 13502.0473

a(%) ¼ (oEi�oTi)/oTi� 100%.
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r ¼ 7.835� 103 kg/m3 and Young’s modulus is E ¼ 2.069� 1011N/m2, the shear coefficient is k0 ¼ 5/6, the
Poisson ratio is v ¼ 0.3, the shear modulus is G ¼ 7.9577� 1010N/m2.

5.1. A single-span Timoshenko beam carrying multiple concentrated elements

The first example is a pinned–pinned (P–P) beam as shown in Fig. 2 carrying three point masses, two rotary
inertias, two linear springs, one rotational spring and one mass–spring system. Two types of cross-sections of
the beam are investigated.

For Type I, the cross-sections of the beam is rectangular with width bI ¼ 0.05m and height hI ¼ 0.06m.
The distributions of the concentrated elements are: three point masses (m1, m4 and m6) located at x1 ¼ 0.2m,
x4 ¼ 0.6m and x6 ¼ 0.8m, respectively; two rotary inertias (J1 and J6) located at x1 ¼ 0.2m and x6 ¼ 0.8m,
respectively; two linear springs (kT3 and kT4) located at x3 ¼ 0.4m and x4 ¼ 0.6m, respectively; one rotational
spring (kR3) located at x3 ¼ 0.4m and one mass–spring system (with me7 and ke7) located at x7 ¼ 0.9m. The
corresponding parameters are: m1 ¼ m4 ¼ 4.701 kg, m6 ¼ 9.402 kg, J1 ¼ 0.04701 kgm2, J6 ¼ 0.14103 kgm2,
kT3 ¼ 1.86210� 106N/m, kT4 ¼ 2.79315� 106N/m, kR3 ¼ 9.3105� 105Nm, me7 ¼ 4.701 kg, ke7 ¼ 5.5863�
105N/m.
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For Type II, the width of beam cross-sections is the same as that of Type I (i.e., bII ¼ bI ¼ 0.05m), but the
depth is hII ¼ 0.12m. The distributions of the concentrated elements are also the same as Type I. The
corresponding parameters are m1 ¼ m4 ¼ 9.402 kg, m6 ¼ 18.804 kg, J1 ¼ 0.09402 kgm2, J6 ¼ 0.28206 kgm2,
kT3 ¼ 1.4897� 107N/m, kT4 ¼ 2.2345� 107N/m, kR3 ¼ 7.4484� 107Nm, me7 ¼ 9.402 kg, ke7 ¼ 4.46904�
106N/m. Table 1 shows the lowest five natural frequencies of the beam. In which, oTi denotes the natural
frequencies of the Timoshenko beam (with effects of shear deformation and rotary inertia considered), oEi

denotes the corresponding ones of the Euler–Bernoulli beam (with effects of shear deformation and rotary
inertia neglected). It is seen that the current numerical results are in excellent agreement with those of FEM. In
Table 1, the third line shows the percentage differences (%) between the lowest five natural frequencies of the
Euler–Bernoulli beam and the corresponding ones of the Timoshenko beam for Type I, while the seventh line
shows those for Type II. Because the main difference between beam Type I and beam Type II is in their depths
and the larger the depth the higher the lowest five natural frequencies. This is the reason why the percentage
differences (%) between the lowest five natural frequencies of the Euler–Bernoulli beam and the corresponding
ones of the Timoshenko beam for Type II are greater than those for Type I.

It is noted that, for the present single-span example, the total number of intermediate stations is n ¼ 5,
including one intermediate spring–mass system (i.e., u ¼ 1), four intermediate concentrated elements (i.e.,
v ¼ 4) and no in-span support (i.e., r ¼ 0). Thus, according to Eq. (71), the total number of equations for the
integration constants is q ¼ 4ðvþ rÞ þ 5uþ 4 ¼ 25 In other words, the order of the overall coefficient matrix
½B� is 25� 25.

5.2. A multispan Timoshenko beam carrying multiple concentrated elements

The second example is a P–P beam with the distributions of concentrated elements and the corresponding
parameters to be the same as of those of the first example but with one to two intermediate pinned supports.
Cross-sections of Types I and II are investigated. Table 2 shows the lowest five natural frequencies of the beam
with one intermediate pinned support located at x3 ¼ 0.4. Table 3 shows the lowest five natural frequencies of
the beam with two intermediate pinned supports located at x3 ¼ 0.4 and x5 ¼ 0.7, respectively. From Tables 2
and 3, one sees that the current numerical results are in excellent agreement with those of FEM. Furthermore,
the percentage differences between the lowest five natural frequencies of the Euler–Bernoulli beam and the
corresponding ones of the Timoshenko beam increase with the increase of beam depth and span number. This
is a reasonable result, because the lowest five natural frequencies of either the Euler–Bernoulli beam or the
Table 2

The lowest five natural frequencies of the two-span beam carrying three point masses, two rotary inertias, two linear springs, one rotational

spring and one mass–spring system

Type of beam Methods Natural frequencies, oXi (rad/s)

oT1 or oE1 oT2 or oE2 oT3 or oE3 oT4 or oE4 oT5 or oE5

Type I

Timoshenko beam Present 344.0505 1630.4214 4666.1223 6410.2455 7724.3333

FEM 344.0506 1630.4224 4666.1381 6410.2876 7724.4087

Euler–Bernoulli beam Present 344.0948 1667.1936 4849.1637 6700.1525 8301.3915
a(%) (0.0128) (2.2554) (3.9228) (4.5226) (7.4707)

FEM 344.0950 1667.1943 4849.1649 6700.1530 8301.3921

Type II

Timoshenko beam Present 687.8352 3070.0901 8431.6168 11466.2293 12962.8693

FEM 687.8353 3070.0988 8431.7648 11466.5627 12963.4151

Euler–Bernoulli beam Present 688.1895 3334.3872 9698.3274 13400.3049 16602.7830
a(%) (0.0515) (8.6088) (15.0230) (16.8680) (28.0800)

FEM 688.1900 3334.3887 9698.3299 13400.3062 16602.7846

a(%) ¼ (oEi�oTi)/oTi� 100%.
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Table 3

The lowest five natural frequencies of the three-span beam carrying three point masses, two rotary inertias, two linear springs, one

rotational spring and one mass–spring system

Type of beam Methods Natural frequencies, oXi (rad/s)

oT1 or oE1 oT2 or oE2 oT3 or oE3 oT4 or oE4 oT5 or oE5

Type I

Timoshenko beam Present 344.5052 4661.1268 6201.4770 7724.1679 9780.4794

FEM 344.5053 4661.1421 6201.5263 7724.2427 9780.6085

Euler–Bernoulli beam Present 344.5391 4844.6172 6496.8886 8299.6140 12301.4300
a(%) (0.0098) (3.9366) (4.7636) (7.4499) (25.7750)

FEM 344.5394 4844.6175 6496.8901 8299.6153 12301.4306

Type II

Timoshenko beam Present 688.8075 8417.9381 10967.4659 12929.3475 13490.0384

FEM 688.8076 8418.0796 10967.9022 12929.7347 13490.6182

Euler–Bernoulli beam Present 689.0781 9689.23447 12993.7772 16599.2279 24602.8599
a(%) (0.0392) (15.1022) (18.4756) (28.38411) (82.3779)

FEM 689.0788 9689.2351 12993.7805 16599.2311 24602.8627

a(%) ¼ (oEi�oTi)/oTi� 100%.

Fig. 3. The lowest five mode shapes of the two-span pinned–pinned (P–P) Timoshenko beam carrying three point masses, two rotary

inertias, two linear springs, one rotational spring and one mass–spring system for (a) Type I beam and (b) Type II beam.
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Timoshenko beam increase with the increase of beam depth and span number, and the effects of shear
deformation and rotary inertia increase with the increase of the lowest five natural frequencies of the beam.
Fig. 3 shows the lowest five mode shapes of the two-span P–P Timoshenko beam with the first, second, third,
fourth and fifth mode shapes represented by the curves , , , , and , respectively, in which
Fig. 3(a) is for Type I beam and Fig. 3(b) is for Type II beam. Fig. 4 shows the lowest five mode shapes of the
three-span P–P Timoshenko beam with the first, second, third, fourth and fifth mode shapes represented by
the curves , , , , and , respectively, for (a) Type I beam and (b) Type II beam.

For the current example with ‘‘two spans,’’ the total number of intermediate stations is n ¼ 6, including one
intermediate spring–mass system (i.e., u ¼ 1), four intermediate concentrated elements (i.e., v ¼ 4) and one in-
span support (i.e., r ¼ 1). Thus, the total number of equations for the integration constants is q ¼

4ðvþ rÞ þ 5uþ 4 ¼ 29 and the order of the overall coefficient matrix ½B� is 29� 29. It is evident that the order
of the overall coefficient matrix ½B� is 33� 33 for the ‘‘three-span’’ case, because four more equations must be
considered due to one more in-span support.
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Fig. 4. The lowest five mode shapes of the three-span pinned–pinned (P–P) Timoshenko beam carrying three point masses, two rotary

inertias, two linear springs, one rotational spring and one mass–spring system for (a) Type I beam and (b) Type II beam.
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6. Conclusions

Because the literature regarding the ‘‘exact’’ solutions for the natural frequencies and associated mode
shapes of a multispan Timoshenko beam carrying multiple concentrated elements (such as point masses with
rotary inertias, linear springs, rotational springs and/or spring–mass systems) are rare, and the classical
analytical methods will suffer much difficulty for the last problem, the theory and ‘‘exact’’ solutions by using
the numerical assembly method (NAM) for the examples presented in this paper will be useful for checking the
accuracy of the numerical results obtained from various ‘‘approximate’’ methods.

Appendix A

4u� 3 4u� 2 4u� 1 4u 4uþ 1 4uþ 2 4uþ 3 4uþ 4 4uþ 5

½Bu� ¼

syu1 cyu1 shyu2 chyu2 �syu1 �cyu1 �shyu2 �chyu2 0

a1cyu1 �a1syu1 a2chyu2 a2shyu2 �a1cyu1 a1syu1 �a2chyu2 �a2shyu2 0

�a1l1syu1 �a1l1cyu1 a2l2shyu2 a2l2chyu2 a1l1syu1 a1l1cyu1 �a2l2shyu2 �a2l2chyu2 0

�1cyu1 þ Fn
usyu1 ��1syu1 þ Fn

ucyu1 �2chyu2 þ Fn
ushyu2 �2shyu2 þ Fn

uchyu2 ��1cyu1 þ�1syu1 ��2chyu2 ��2shyu2 0

syu1 cyu1 shyu2 chyu2 0 0 0 0 s2u � 1

2
666666664

3
777777775

4u� 2

4u� 1

4u

4uþ 1

4uþ 2

(A.1)

yu1 ¼ l1xu; yu2 ¼ l2xu; syu1 ¼ sin yu1; cyu1 ¼ cos yu1; shyu2 ¼ sinh yu2; chyu2 ¼ cosh yu2

a1 ¼
l1

½1� ðJō2=k0AGÞ� þ ðEI=k0AGÞl21
; a2 ¼

l2
½1� ðJō2=k0AGÞ� � ðEI=k0AGÞl22

; F�u ¼
meuo2

1� ðo=oeuÞ
2

�1 ¼ k0AGða1 � l1Þ; �2 ¼ k0AGða2 � l2Þ; su ¼ ðo=oeuÞ
2
� 1 (A.2)

4v� 3 4v� 2 4v� 1 4v 4vþ 1 4vþ 2 4vþ 3 4vþ 4

Bv½ � ¼

syv1 cyv1 shyv2 chyv2 �syv1 �cyv1 �shyv2 �chyv2

a1cyv1 �a1syv1 a2chyv2 a2shyv2 �a1cyv1 a1syv1 �a2chyv2 �a2shyv2

�b1syv1 þ f1cyv1 �b1cyv1 � f1syv1 b2shyv2 þ f2chyv2 b2chyv2 þ f2shyv2 b1syv1 b1cyv1 �b2shyv2 �b2chyv2

Z1syv1 þ �1cyv1 Z1cyv1 � �1syv1 Z1shyv2 þ �2chyv2 Z1chyv2 þ �2shyv2 ��1cyv1 �1syv1 ��2chyv2 ��2shyv2

2
666664

3
777775

4v� 1

4v

4vþ 1

4vþ 2

(A.3)
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yv1 ¼ l1xv; yv2 ¼ l2xv; syv1 ¼ sin yv1; cyv1 ¼ cos yv1; shyv2 ¼ sinh yv2; chyv2 ¼ cosh yv2

b1 ¼ EIa1l11; b2 ¼ EIa2l2; f1 ¼ a1ðkRv � Jvo2Þ; f2 ¼ a2ðkRv � Jvo2Þ,

Z1 ¼ ðmvo2 � kTvÞ �1 ¼ k0AGða1 � l1Þ �2 ¼ k0AGða2 � l2Þ (A.4)

4r� 3 4r� 2 4r� 1 4r 4rþ 1 4rþ 2 4rþ 3 4rþ 4

Br½ � ¼

syr1 cyr1 shyr2 chyr2 0 0 0 0

0 0 0 0 syr1 cyr1 shyr2 chyr2

a1cyr1 �a1syr1 a2chyr2 a2shyr2 �a1cyr1 a1syr1 �a2chyr2 �a2shyr2

�a1l1syr1 �a1l1cyr1 a2l2syr2 a2l2chyr2 a1l1syr1 a1l1cyr1 �a2l2shyr2 �a2l2chyr2

2
666664

3
777775

4r� 1

4r

4rþ 1

4rþ 2

(A.5)

yr1 ¼ l1xr; yr2 ¼ l2xr; syr1 ¼ sin yr1; cyr1 ¼ cos yr1; shyr2 ¼ sinh yr2; chyr2 ¼ cosh yr2
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