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Abstract

The purpose of this paper is to utilize the numerical assembly method (NAM) to determine the exact natural frequencies
and mode shapes of the multispan Timoshenko beam carrying a number of various concentrated elements including point
masses, rotary inertias, linear springs, rotational springs and spring—mass systems. First, the coefficient matrices for an
intermediate pinned support, an intermediate concentrated element, left- and right-end support of a Timoshenko beam are
derived. Next, the overall coefficient matrix for the whole structural system is obtained using the numerical assembly
technique of the finite element method. Finally, the exact natural frequencies and the associated mode shapes of the
vibrating system are determined by equating the determinant of the last overall coefficient matrix to zero and substituting
the corresponding values of integration constants into the associated eigenfunctions, respectively. The effects of
distribution of in-span pinned supports and various concentrated elements on the dynamic characteristics of the
Timoshenko beam are also studied.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

A beam being short in length relative to its transverse dimensions or a long beam vibrating in a higher mode
so that the nodal points are close together, a deformation due to the shear stress occurs in the beam except that
it is subjected only to the pure bending moment. In such situation, it is necessary to use the full Timoshenko
theory of beam deformation. Many researchers [1-4] studied the vibration problems of a cantilever
Timoshenko beam with a tip body at its free end. Maurizi and Bellés [5] studied the natural frequencies of the
beam—mass system of a simply supported uniform Timoshenko beam. Abramovich and Hamburger [6]
studied the vibration of a uniform cantilever Timoshenko beam with translational and rotational springs and
with a tip mass. Rossi et al. [7] studied the free vibration of Timoshenko beams carrying elastically mounted,
concentrated masses. Posiadala [8] studied the free vibrations of uniform Timoshenko beams with attachments
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Nomenclature R, radius of gyration of cross-sectional area
A(Ry = \/1/4)
A cross-sectional area of the beam u total number of intermediate spring—
E Young’s modulus of the beam mass systems
G shear modulus of the beam v total number of intermediate concen-
1 moment of inertia of cross-sectional area trated elements
A of the beam Xy axial coordinate of station u
] V=1 y(x, t) transverse displacement at position x and
Jy rotary inertia of lumped mass m, at the time ¢ for the beam
vth station Y amplitude function of y(x, 1)
K shear coefficient z,(?)  instantaneous displacement for lumped
kro rotational spring constant at the woth mass m,, of the spring—mass system at
station the wuth station (relative to its static
kty translational (linear) spring constant at equilibrium position)
the vth station 2y acceleration of z,(¢)
Key spring constant of the spring—mass sys- Z, amplitude of z,(7)
tem at the uth station 0 mass density of the beam
L total length of the beam @(x, t) bending slope at position x and time ¢
m mass per unit length of the beam Wy natural frequency of the spring—mass
m, lumped mass at the vth station system at the uth station (with respect
Mgy lumped mass of the spring—mass system to the static beam)
at the uth station 7y ith natural frequency of Timoshenko
n total number of intermediate stations beam
q total number of equations for the inte- WE; ith natural frequency of Euler—Bernoulli
gration constants beam
7 total number of intermediate pinned Q; dimensionless frequency parameter cor-
supports responding to the ith vibration mode

by means of the Lagrange multiplier approach. Hong and Kim [9] proposed an exact modal analysis of
multispan beam-type structure supported and/or connected by resilient joints with damping by means of the
spatial domain Laplace transform. Glirgéze [10-12] presented the eigenfrequencies of a cantilever beam with
attached tip mass and a spring—mass system and those of a cantilever beam with several spring—mass systems.
Wu and Chen [13] presented a modified lumped-mass transfer matrix method for the free vibration analysis of
a multistep Timoshenko beam carrying eccentric lumped masses with eccentricity and rotary inertias. Wu and
Chen [14] obtained the exact solution of a single-span uniform Timoshenko beam carrying any number of
spring—mass systems by using NAM. Lin and Tsai determined the exact values of natural frequencies and
associated mode shapes of a ““‘multispan’ uniform beam carrying multiple spring—mass systems [15] and those
of a multiple-step beam carrying a number of intermediate lumped masses and rotary inertias [16] with the
NAM. From the foregoing literature review, one finds that the literature regarding determination of exact
natural frequencies and mode shapes of a ‘“‘multispan” Timoshenko beam carrying multiple various
concentrated elements is little. Therefore, the objective of this paper is to extend the theory of NAM to
investigate the free vibration characteristics of a multispan Timoshenko beam carrying multiple point masses,
rotary inertias, linear springs, rotational springs and spring—mass systems.

2. Equation of motion and displacement function

Fig. 1 shows the sketch of a uniform beam supported by 7 pins, carrying u spring—mass systems and o
various concentrated elements. If each of the points that the 7 intermediate pinned supports, the % spring—mass
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Fig. 1. Sketch for a uniform Timoshenko beam supported by 7 intermediate pins, carrying # spring-mass systems and v various
concentrated elements.

systems or the ¥ concentrated elements located is called a “‘station,” then the total number of intermediate
stations is n.

Considering the effects of shear deformation and rotary inertia, the equation of motion for a uniform beam
is given by [17]

Fo(e,t) . ((x,10) » Oo(x,1)
(), (O(x, ) de(x,1)
"o _kAG( x> ox )‘0 @

where E is Young’s modulus, A4 is the cross-sectional area, I is the moment of inertia of the cross-sectional area
A about the axis of bending, k' is the shear coefficient, G is the shear modulus and p is the mass density of the
beam material, 7 = pA4 is mass per unit length of the beam, R, = /I/A4 is radius of gyration of cross-
sectional area A, y(x, t) is the transverse deflection of the beam at position x and time ¢ and ¢(x, ¢) is the
bending slope.

Egs. (1) and (2) are referred to as the Timoshenko beam equations and can be decoupled as follows:

v, tu(x, 1) R E\Yy(x,0) (MR d*y(x, 1)
EI d i  _mR*( 1 2 g 22 =0 3
ox* +m %t m g( +k’G> % x0%t KAG) o ®

o, e, 1) 5 E\do(x,t) (M RE\ *o(x, 1)
EI " m 2 mRr (1 ’ g A 4
ot T T ’/( +k’G> oo T \vae) o O )

Free vibration of the beam takes the form

y(x, 1) = Y(x)e” (5)
o(x, 1) = P(x)e! (6)

where Y(x) and ¥(x) are the amplitude functions of y(x, #) and ¢(x, f), respectively, o is natural frequency of
the whole vibrating system and j = +/—1.
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Substituting Eqgs. (5) and (6) into Egs. (3) and (4), respectively, one obtains

/"

Y +@+b)Y —(c—ab)Y =0 7
" L (a+ bV —(c—ab)Y =0 (8)
where
mm? plw? maw?
“Twac T Er ‘T E (®a=c)
The general solutions of Egs. (7) and (8) take the forms
Y(x) = Cy sin(4;x) + C; cos(41x) + C3 sinh(4rx) + C4 cosh(4x) (10)
Y(x) = C} sin(A1x) + C5 cos(41x) + C; sinh(/2x) + C} cosh(4yx) (11)
where C, and C', (p =1, 2, 3, 4) are the integration constants, and
1/2
_ {%[46 bR +%(a+b)} (12a)
) 1 291/2 1 12
7o = {Ac+ @ -0 = Ya+b)} (12b)

The substitution of Egs. (5), (6), (10) and (11) into Eq. (1) gives

1
<1 pre >[C/ sin(11x) + C, cos(41x) + C4 sinh(42x) + C cosh(4yx)]

KAG
El /12 /92 1 92

k’AG[ C\ Ay sin(41x) — cos()qx) + C54; sinh(4yx) 4+ CyA; cosh(/2x)]
= C141 cos(A1x) — Caky sin(/hx) + C34; cosh(2,x) + C4/; sinh(Arx) (13)
C/l = —061C2, C/2 = OC]C], C% = O(2C4, C:‘ = 062C3 (14a—d)

where
A A

o = 1 o = 2 (15a,b)

[1 — (pl? /K AG) + (EI /K AG)A7’ [1 — (plw? /K AG)] — (EI /K AG)};

3. Determination of coefficient matrices for the stations located by pin supports, concentrated elements
and beam ends

For an arbitrary station located at x, (cf. Fig. 1), from Eqgs. (10) and (11) one obtains

Y(x,) = Cy,1 sin(A1xg) + Cyp cos(A1xg) + Cy 3 sinh(Ayxy) + Cy4 cosh(Aoxy) (16)
Y(x5) = Cypo cos(Arxs) — Cypo sin(Ayxs) + Cy30 cosh (Aaxy) + Cs a0 sinh(4yx;) (17)
Vs(xs) = Cy1/1 cos(A1xs) — Cyal1 sin(A1xg) + Cs342 cosh(Aaxy) + Cy4la sinh(2ax;) (18)

?;(xs) = —C, a1 sin(A1xs) — Cya0 41 cos(A1xs) + Cs 3022 sinh(Aaxg) + Cya042 cosh(A1xy) (19)

where the primes refer to differentiation with respect to the coordinate x.
If the station numbering corresponding to the intermediate spring—mass system is represented by u, then the
continuity of deformations and equilibrium of moments and forces require that

Ya(x) = Yh(x,) (20)
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7, (x) = P, (x) 1)

Tl(x) = P h(x) (22)

KAGIT,(x,) — V', (v)] + Fi¥(x,) = K AGIP, (x,) — ' ()] (23)
+ Mey” (24)

" 1 - (w/weu)z

In Egs. (20)~(23), the superscripts “L” and “R” refer to the left-hand and right-hand side of station u,

respectively.
The equation of motion for the intermediate spring—mass system of uth station is given by
MeyZy + keu(zy — y,) = 0 (25)
Free vibration of the spring—mass system takes the form
zu(t) = Zu el (26)
with Z, denoting the amplitude of z(¢), then the substitution of Eqgs. (5) and (25) into Eq. (24) gives
Yu(x) + [(0/0a) =112, =0 27)
1/2
Wey = (kell> (28)
mEU

where m,, and k., denote the point mass and spring constant of the spring-mass system of uth station,
respectively, z, and Z, denote the displacement and acceleration of the spring mass (m1,,) relative to its static
equilibrium position, and w,, defined by Eq. (28) denotes the natural frequency of the spring—mass system
with respect to the static beam.
Substituting Egs. (16)—(19) into Egs. (20)—(23) and (27), respectively, one obtains
Cy.1 sin(A1xy) + Cyn cos(41x,) + C,3 sinh(4zx,) + Cy4 cosh(zx,,)
— Cyqr,1 sin(A1x,) — Cyuqq2 cos(d1x,) — Cyy 3 sinh(42x,) — Cyp14 cosh(lzx,) =0 (29)

Cu’]otl cos(}ylxu) — Cu,2a1 Sil’l(/l]xu) + Cu,3062 COSh(;QXu) + Cu,4062 sinh(/lzxu)
— Cuy1,10q €08(A1x,) + Cugrp0 sin(Ax,) — Cyuy1 300 cosh(4ax,) — Cyuyr 400 sinh(Zox,) =0 (30)

— Cyy01/y sin(41x,) — Cya014; cos(A1x,) + Cy 3024z sinh(Aaxy,) + Cy a0, cosh(Aax,)
+ Cugr1a1 4y sin(21x,) + Cyy1 00041 cos(A1x,) — Cyp13004s sinh(Aax,) — Cyp14004; cosh(dox,) =0 (31)

k' AG[Cy 100 cos(A1x,) — Cyao sin(Aix,) + Cy300 cosh(Aax,) + Cya0n sinh(Aax,)
— Cy1hy cos(A1x,) + Cyaiy sin(dx,) — Cy 34z cosh(dax,) — Cyala sinh(Aax,)]
+ F2[Cy1 sin(A1x,) + Cyp cos(A1x,) + Cy3 sinh(Aax,) + Cya cosh(dax,)]
— K AG[Cyy1, 101 c0s(A1X,) — Cugrp0 sin(A1x,) + Cuqr 302 cosh(Aoxy) + Cup1402 sinh(Zox,)
— Cug1,141 cos(A1xy) + Cyuyi241 sin(A1x,) — Cyq1 342 cosh(lax,) — Cyq1442 sinh(4rx,)] =0 (32)

C,a sin(41x,) + Cy2 cos(A1x,) + C, 3 sinh(4rx,) + Cya cosh(dax,) + [(co/co(,,,)2 - 1]Z,=0 (33)
Writing Egs. (29)—(33) in matrix form, one obtains

[B.] {Cu}=0 (34)
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where
{Cu}:{CuJ Cip Cuz Cus Cuyit Cugip Cur1z Cugis Z;} (35)

and the coefficient matrix [B,] is given by Eq. (A.1) in Appendix A at the end of this paper. In Eq. (34), the
symbols, [] and {}, denote the rectangular matrix and column vector, respectively.

If the station numbering corresponding to the intermediate concentrated elements (including point masses,
rotary inertias, linear springs and rotational springs) is represented by v, then the continuity of deformations
and equilibrium of moments and forces require that

V() =Yy (x) (36)

Py (x) = P, (x) (37)

EIV " (x,) — (J,00* — ko) P-(x0) = EIP " (x,) (38)

KAGIPL (x,) = 'y (x)] + (mor? — k) Yr(x,) = KAGIT (x,) — ¥/, (x,)] (39)

Substituting Egs. (16)—(19) into Egs. (36)—(39), respectively, one obtains
Cy1 sin(41x,) + Cyp cos(41x,) + Cy 3 sinh(Aax,) + Cpa cosh(4ax,)
— Cyy1,1 sin(A1x;) — Cyq12 €0s(A1x,) — Cypp 3 sinh(Aax,) — Cpy14 cosh(dox,) =0 (40)

Cv,locl cos(A1x,) — Cv,2a1 sin(4x,) + CU,3062 cosh(Z,x,) + Cv,4062 sinh(4,x,)
— Coy1,10 €OS(A1Xy) + Cogrp0q sin(Aixy) — Coqr 300 cosh(daxy) — Copp a0 sinh(Arx,) =0 (41)

EI[—Cy 10041 sin(A1x,) — Cyao1 A1 cos(A1xy) + Cy30als sinh(Aaxy,) + Cya004r cosh(Arxy)]
- (Jw2 - kRv)[Cv,lotlﬂq cos(A1x,) — CU,QOQ)@ sin(41x,) + CU’3062},2 cosh(Zx,) + Cv’4062j,2 sinh(Z,x,)]
+ EI[Cpy1 1001 sin(A1x,) + Coyprp00 A1 cos(d1x,) — Cyp1 30047 sinh(dax,) — Cyp 40045 cosh(dox,)] =0 (42)

k' AG[C, 04 cos(A1x,) — Cyaoy sin(Aix,) + Cp30 cosh(lax,) + Cp a0 sinh(Aax,)
— Cp 141 cos(L1x,) + Cpady sin(A1x,) — Cy342 cosh(Aaxy) — Cpada sinh(Aax,)]
+ (myw?* — krs)[Cp1 sin(A1x,) + Cya cos(A1x,) + Cp3 sinh(Aaxy,) + Cpa cosh(Aaxy)]
— K AG[Cpy11001 cos(A1xy) — Cyp1200 sin(A1x,) + Cpy1300 cosh(2ax,) + Cppy 40, sinh (Aox,)
— Cpy1.121 co8(A1xy) + Cpy1241 8in(A1x,) — Cppy 342 cosh(dax,) — Cpyyadn sinh(Aax,)] =0 (43)

Writing Egs. (41)-(43) in matrix form, one obtains
[B.] {Cu} =0 (44)
where

{Cu}={Cu,l Cop Gz Coa Copin Copip Copis Cu+1,4} (45)

and the coefficient matrix [B,] is given by Eq. (A.3) in Appendix A at the end of this paper.
Similarly, if the station numbering corresponding to the intermediate pinned—support is represented by r,
then the continuity of deformations and equilibrium of moments require that

Y () =Y () =0 (46,47)
i(x) =¥, (x) (48)

700 =7, (x) (49)
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Substituting Egs. (16)—(19) into Egs. (46)—(49), respectively, one obtains
C,1 sin(41x,) + Cr2 cos(A1x,) + C, 3 sinh(4yx,) + C, 4 cosh(4ax,) =0 (50)
CH_]’] sin(ilx,) =+ C,~+1’2 COS(ilxr) + C,~+1,3 Sil’lh(/lzx,-) =+ Cr+1,4 COSh(izxr) =0 (51)

C,,lotl cos(/llx,.) — Cr,zotl sin()qx,.) + Cr,30€2 COSh(/hx,) + Cr,40!2 sinh(ﬂvgx,)
— Crpr100 €08(21x,) + Crpr 20 sin(41x,) — Cryy 300 cosh(drx,) — Cryy 400 sinh(4rx,) =0 (52)

— Cr1o04; sin(A1x,) — Crao1 41 cos(Ai1x,) + Cr3oala sinh(Aax,) + Cr 40042 cosh(dax;)
+ Crpraon /g sin(A1x,) + Crpipoq Ay cos(A1xy) — Cry 300242 sinh(Axx,) — Crpg 4004y cosh(Zox,) =0 (53)
Writing Egs. (50)—(53) in matrix form, one obtains
[B] {C} =0 (54)
where

{C,-}:{Cr,l Cpo Cp3 Cyg Coin Cohip G Cr+1,4} (55)

and the coefficient matrix [B,] is given by Eq. (A.5) in Appendix A at the end of this paper.
If the left-end support of the beam is pinned as shown in Fig. 1, then the boundary conditions are

Yo(0) = ¥o(0) =0 (56,57)
From Egs. (16), (19) and (56), (57) one obtains
Coa+ Coa=0 (58)
—Cor0141 + Cos0272 =0 (59
or in matrix form
[Bo] {Co} =0 (60)

where

1 2 3 4

0 1 0 1 71
Byl = 61
[ 0] 0 —061/11 0 Oﬁz/lz 2 ( )
{Co} = { Coi Cop Cos C0,4} (62)
If the right-end support of the beam is pinned as shown in Fig. 1, then the boundary conditions are
Yn(L) =¥ NL)=0 (63,64)
N=n+1 (65)
From Egs. (16), (19), (63) and (64), one obtains
Cy sin(A41L) + Cnp cos(41L) + Cy 3 sinh(AaL) + Cy 4 cosh(42L) =0 (66)
—CNJOC]/M sin(4; L) — CN,zotl/ll cos(A41 L) + CN,306212 sinh(4,L) + CN,4062},2 cosh(4,L) =0 (67)

or in matrix form

[By] {Cn} =0 (68)
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where
4N -3 4N -2 4N — 1 4N
sin(4; L) cos(41L) sinh(4,L) cosh(/,L) qg-—1
Byl = 69
[ N] —OC]A[ sin()vlL) —OC]/l] COS(;L]L) Otg/lz sinh(igL) 062/12 COSh()LzL) q ( )
{Cy} = { Cnvi Cnz Cn3 Cyna } (70)

where ¢ denotes the total number of equations for the integration constants given by
q=40+7) +5u+4 (71)

From the next Eq. (72), one sees that the overall coefficient matrix [B] is a square matrix having g rows and ¢
columns. Among the ¢ x ¢ coefficients of [B], By (¢ =1, 2,....g and b =1, 2,...,q), the contribution of the
sub-matrix [By] given by Eq. (61) is given by By; = By with k = 1,2 and / = 1, 2, 3, 4. In other words, digits I,
2, 3 and 4 on top side of [By] and those 1 and 2 on right-hand side of [ By] represent the identification numbers
for the associated elements of the coefficient sub-matrix [By] for achieving the overall coefficient matrix [B] by
using the numerical assembly technique as done by the conventional finite element method (FEM). It is
evident that, for the specified values of N and ¢, the digits determined by 4N—3, 4N—2, 4N—1 and 4N, shown
on top side of [By], and those determined by ¢—1 and ¢, shown on right-hand side of [By], represent the
identification numbers for the associated elements of the coefficient sub-matrix [By].

4. Determination of natural frequencies and mode shapes of the beam

The integration constants relating to the left- and right-end supports of the beam are defined by Egs. (62)
and (70), respectively, while those relating to the intermediate stations are defined by Egs. (35), (45) and/or
(55) depending upon point mass, rotary inertia, linear spring, rotational spring, spring—mass system and/or
rigid (pinned) support being located there. The associated coefficient matrices are given by [By] (cf. Eq. (61)),
[B.] (cf. Eq. (A.1) of Appendix A), [B,] (cf. Eq. (A.3) of Appendix A), [B,] (cf. Eq. (A.5) of Appendix A) and
[By] (cf. Eq. (69)). From the last equations concerned one may see that the identification numbers for each
element of the last coefficient matrices are shown on the top side and right-hand side of each matrix.
Therefore, using the numerical assembly technique as done by the conventional FEM one may obtain a matrix
equation for all the integration constants of the entire beam

(B]{C} =0 (72)
Non-trivial solution of Eq. (72) requires that its coefficient determinant is equal to zero, i.e.,
|B| =0 (73)

Which is the frequency equation for the present problem.

In this paper, the incremental search method is used to find the natural frequencies of the vibrating system,
w; (i=1,2,...). For each natural frequency w,, one may obtain the corresponding integration constants from
Eq. (72). The substitution of the last integration constants into the displacement functions of the associated
beam segments will determine the corresponding mode shape of the entire beam, Y(X).

5. Numerical results and discussions

Before the free vibration analysis of a multispan Timoshenko beam carrying multiple concentrated elements
is performed, the reliability of the theory and the computer program developed for this paper are confirmed
by comparing the present results with those obtained from the conventional FEM. In FEM, the two-node
beam elements are used and the entire beam is subdivided into 80 beam elements. Since each node has two
degrees of freedom (dofs), the total dof for the entire unconstrained beam is 162. The dimensions of the
Timoshenko beam studied in this paper are (cf. Fig. 1): the total length is L = 1.0m; the mass density is



H.-Y. Lin | Journal of Sound and Vibration 319 (2009) 593-605 601

Xy »|

Fig. 2. Sketch for a pinned—pinned beam carrying three point masses, two rotary inertias, two linear springs, one rotational spring and one
mass—spring system.

Table 1
The lowest five natural frequencies of the beam shown in Fig. 2 carrying three point masses, two rotary inertias, two linear springs, one
rotational spring and one mass—spring system

Type of beam Methods Natural frequencies, wy; (rad/s)
W7 O WE) Wy OF Wen W73 O WE3 W1y O WEy Wrs O WEs
Type I
Timoshenko beam Present 343.5143 791.2395 2476.9018 4777.2470 6465.0813
FEM 343.5144 791.2397 2476.9059 4777.2633 6465.1220
Euler-Bernoulli beam Present 343.5574 794.4713 2535.9428 4957.8052 6751.0220
(%) (0.0125) (0.4084) (2.3837) (3.7795) (4.4228)
FEM 343.5577 794.4716 2535.9430 4957.8055 6751.0235
Type 11
Timoshenko beam Present 686.7688 1563.8251 4647.742 8663.0645 11614.2554
FEM 686.7688 1563.8267 4647.7791 8663.2195 11614.5446
Euler-Bernoulli beam Present 687.1147 1588.9425 5071.8856 9915.6103 13502.0439
(%) (0.0503) (1.6062) (9.1258) (14.458) (16.254)
FEM 687.1154 1588.9433 5071.8860 9915.6110 13502.0473

(%) = (wgi—wp)|or x 100%.

p =7.835x10°kg/m’ and Young’s modulus is E = 2.069 x 10" N/m?, the shear coefficient is K’ = 5/6, the
Poisson ratio is v = 0.3, the shear modulus is G = 7.9577 x 10'°N/m?.

5.1. A single-span Timoshenko beam carrying multiple concentrated elements

The first example is a pinned—pinned (P-P) beam as shown in Fig. 2 carrying three point masses, two rotary
inertias, two linear springs, one rotational spring and one mass—spring system. Two types of cross-sections of
the beam are investigated.

For Type I, the cross-sections of the beam is rectangular with width »; = 0.05m and height /; = 0.06 m.
The distributions of the concentrated elements are: three point masses (m2;, m4 and myg) located at x; = 0.2m,
x4 = 0.6m and x¢s = 0.8 m, respectively; two rotary inertias (J; and Jg) located at x; = 0.2m and x4 = 0.8 m,
respectively; two linear springs (k73 and kr4) located at x; = 0.4 m and x4 = 0.6 m, respectively; one rotational
spring (kgs3) located at x3 = 0.4 m and one mass—spring system (with m.; and k) located at x; = 0.9m. The
corresponding parameters are: m; = my = 4.701 kg, mg = 9.402kg, J; = 0.04701 kg m?, Jg = 0.14103 kg m>,
kTg, = 1.86210 x 10°N/m, k74 = 2.79315 x 10°N/m, kg3 = 9.3105 x 10°Nm, m,; = 4.701 kg, k,; = 5.5863 x
10° N/m.
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For Type I, the width of beam cross-sections is the same as that of Type I (i.e., b;; = by = 0.05 m), but the
depth is A;; = 0.12m. The distributions of the concentrated elements are also the same as Type 1. The
corresponding parameters are m; = my, = 9.402kg, mg = 18.804 kg, J, = 0.09402 kgm?, Js = 0.28206 kg m>,
ks = 1.4897 x 10" N/m, kpy = 2.2345 x 10’ N/m, kgy = 7.4484 x 10'Nm, m,, = 9.402kg, k., = 4.46904 x
10° N/m. Table 1 shows the lowest five natural frequencies of the beam. In which, ws; denotes the natural
frequencies of the Timoshenko beam (with effects of shear deformation and rotary inertia considered), wg;
denotes the corresponding ones of the Euler—Bernoulli beam (with effects of shear deformation and rotary
inertia neglected). It is seen that the current numerical results are in excellent agreement with those of FEM. In
Table 1, the third line shows the percentage differences (%) between the lowest five natural frequencies of the
Euler—Bernoulli beam and the corresponding ones of the Timoshenko beam for Type I, while the seventh line
shows those for Type II. Because the main difference between beam Type I and beam Type II is in their depths
and the larger the depth the higher the lowest five natural frequencies. This is the reason why the percentage
differences (%) between the lowest five natural frequencies of the Euler—Bernoulli beam and the corresponding
ones of the Timoshenko beam for Type II are greater than those for Type 1.

It is noted that, for the present single-span example, the total number of intermediate stations is n = 5,
including one intermediate spring—mass system (i.e., # = 1), four intermediate concentrated elements (i.e.,
7 = 4) and no in-span support (i.e., 7 = 0). Thus, according to Eq. (71), the total number of equations for the
integration constants is ¢ = 4(v +7) + 5u + 4 = 25 In other words, the order of the overall coefficient matrix

[B] is 25 x 25.

5.2. A multispan Timoshenko beam carrying multiple concentrated elements

The second example is a P-P beam with the distributions of concentrated elements and the corresponding
parameters to be the same as of those of the first example but with one to two intermediate pinned supports.
Cross-sections of Types I and II are investigated. Table 2 shows the lowest five natural frequencies of the beam
with one intermediate pinned support located at x; = 0.4. Table 3 shows the lowest five natural frequencies of
the beam with two intermediate pinned supports located at x; = 0.4 and x5 = 0.7, respectively. From Tables 2
and 3, one sees that the current numerical results are in excellent agreement with those of FEM. Furthermore,
the percentage differences between the lowest five natural frequencies of the Euler—Bernoulli beam and the
corresponding ones of the Timoshenko beam increase with the increase of beam depth and span number. This
is a reasonable result, because the lowest five natural frequencies of either the Euler—Bernoulli beam or the

Table 2
The lowest five natural frequencies of the two-span beam carrying three point masses, two rotary inertias, two linear springs, one rotational
spring and one mass—spring system

Type of beam Methods Natural frequencies, wy; (rad/s)
@7 O Wgy Wy O Wpo W73 O W3 W74 O Wy W75 O WEs
Type I
Timoshenko beam Present 344.0505 1630.4214 4666.1223 6410.2455 7724.3333
FEM 344.0506 1630.4224 4666.1381 6410.2876 7724.4087
Euler—Bernoulli beam Present 344.0948 1667.1936 4849.1637 6700.1525 8301.3915
%) (0.0128) (2.2554) (3.9228) (4.5226) (7.4707)
FEM 344.0950 1667.1943 4849.1649 6700.1530 8301.3921
Type 11
Timoshenko beam Present 687.8352 3070.0901 8431.6168 11466.2293 12962.8693
FEM 687.8353 3070.0988 8431.7648 11466.5627 12963.4151
Euler-Bernoulli beam Present 688.1895 3334.3872 9698.3274 13400.3049 16602.7830
(%) (0.0515) (8.6088) (15.0230) (16.8680) (28.0800)
FEM 688.1900 3334.3887 9698.3299 13400.3062 16602.7846

(%) = (wgi—or)/o7 x 100%.
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Table 3
The lowest five natural frequencies of the three-span beam carrying three point masses, two rotary inertias, two linear springs, one
rotational spring and one mass—spring system

Type of beam Methods Natural frequencies, wy; (rad/s)
@7y O WEy W O Wp» W73 O WE3 W7y O WEy Wrs O WEs
Type I
Timoshenko beam Present 344.5052 4661.1268 6201.4770 7724.1679 9780.4794
FEM 344.5053 4661.1421 6201.5263 7724.2427 9780.6085
Euler-Bernoulli beam Present 344.5391 4844.6172 6496.8886 8299.6140 12301.4300
(%) (0.0098) (3.9366) (4.7636) (7.4499) (25.7750)
FEM 344.5394 4844.6175 6496.8901 8299.6153 12301.4306
Type 11
Timoshenko beam Present 688.8075 8417.9381 10967.4659 12929.3475 13490.0384
FEM 688.8076 8418.0796 10967.9022 12929.7347 13490.6182
Euler-Bernoulli beam Present 689.0781 9689.23447 12993.7772 16599.2279 24602.8599
(%) (0.0392) (15.1022) (18.4756) (28.38411) (82.3779)
FEM 689.0788 9689.2351 12993.7805 16599.2311 24602.8627
(%) = (wg—w)/or x 100%.
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Fig. 3. The lowest five mode shapes of the two-span pinned—pinned (P-P) Timoshenko beam carrying three point masses, two rotary
inertias, two linear springs, one rotational spring and one mass—spring system for (a) Type I beam and (b) Type II beam.

Timoshenko beam increase with the increase of beam depth and span number, and the effects of shear
deformation and rotary inertia increase with the increase of the lowest five natural frequencies of the beam.
Fig. 3 shows the lowest five mode shapes of the two-span P-P Timoshenko beam with the first, second, third,
fourth and fifth mode shapes represented by the curves —, -, —-—-, ——— and , respectively, in which
Fig. 3(a) is for Type I beam and Fig. 3(b) is for Type II beam Fig. 4 shows the lowest five mode shapes of the
three-span P-P Timoshenko beam with the first, second, third, fourth and fifth mode shapes represented by
the curves ——, , —-—-, ———, and -, respectively, for (a) Type I beam and (b) Type II beam.

For the current example with “two spans,” the total number of intermediate stations is # = 6, including one
intermediate spring—mass system (i.c., # = 1), four intermediate concentrated elements (i.e., v = 4) and one in-
span support (i.e., 7= 1). Thus, the total number of equations for the integration constants is ¢ =
40 +7) + 5u+ 4 = 29 and the order of the overall coefficient matrix [B] is 29 x 29. It is evident that the order
of the overall coefficient matrix [B] is 33 x 33 for the “three-span” case, because four more equations must be
considered due to one more in-span support.
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Fig. 4. The lowest five mode shapes of the three-span pinned—pinned (P-P) Timoshenko beam carrying three point masses, two rotary
inertias, two linear springs, one rotational spring and one mass—spring system for (a) Type I beam and (b) Type II beam.

6. Conclusions

Because the literature regarding the “exact” solutions for the natural frequencies and associated mode
shapes of a multispan Timoshenko beam carrying multiple concentrated elements (such as point masses with
rotary inertias, linear springs, rotational springs and/or spring—mass systems) are rare, and the classical
analytical methods will suffer much difficulty for the last problem, the theory and “‘exact” solutions by using
the numerical assembly method (NAM) for the examples presented in this paper will be useful for checking the
accuracy of the numerical results obtained from various “approximate’” methods.

Appendix A

4u—3 qu—2 4u—1 4u 4u+1 4u+2 4u+3 du+4 du+5
80,1 c0,1 shf,, chl,» —50,1 —cly —sh0,» —chl,» 0 4y —2
o1¢l, —0180,1 o2chl, ozsh0,» —a1C0, ot180,1 —oach0, —aashl,, 0 4du—1
B, = —o1 4180, —01 210, 02/28h0,2 uadach0,n ardisOu  aAicly  —ondashly  —aniochl, 0 4u
e1¢0,1 + FisOy  —e180,1 + FiicOy  eachbp + FishOp  68h0,, + Fich0,, —ecly  +es0a  —echl, —é&>shf,n 0 4u+1
0,1 cO,1 sh,, chO,, 0 0 0 0 o2 —1|4du+2
(A.1)
0 = 2ixy, 0, =lyx,, 0, =sinb,, cb0, =cos0,, shO, =sinh 0, chb,, =cosh 0,,
o il o /lz % meuwz
l = - 2 = _ R =
[l — (J&* /K AG) + (EI /K AG)A}’ [l —(J@* /K AG) — (EI/K AG)3™ " 1 —(0)ww)
el =K AG(ay — A1), & =kKAG(y — 2), 04 = (0)We)* — 1 (A.2)
4v-3 4v -2 4v—1 4v 4v+1 4v+2 4v+3 4v+4
50,1 Oy sh0,, chO,, —50,1 —cOy —shl,, —chOp 7 4p—1
o1y —o150,1 o chOy, 0 5h0, —oycly;  oys0,1  —oachly,  —oapshly, 40
[B,]=
! _ﬁlsgvl + (l)lcevl _ﬁlcevl - lesezvl BZShGUZ + szcheli BZChGLQ + (szhevZ ﬁlseul Blcgvl _ﬁ2S119l?2 _BZC}ZOIQ 4dv+1
1,50,1 + €1¢0, 00y — €150, nsh0yn + e2chByy  1,chB + e2shly  —e1c0, €150,  —exchB  —eashby | 4p 42

(A.3)
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0, = A1xy, Op = Aox,, s0, =sinb,, O, =cosb,, shO, =sinh0,, chl,y = cosh0y
= Elajy, By =Elnly, ¢ = ok, — Jo0), ¢y = ook, — J,0%),

m = (mw® —kp) &6 =k AG(y — 1) & =k AG(w — ) (A4
4r —3 4r -2 4r — 1 4r 4r 41 4r 42 4r 43 4r 44
50,1 0, sh0,, chb,, 0 0 0 0 4r — 1
0 0 0 0 504 0 sh0,, chb,, 4r
B/ =
(8] o010, —o150,1 orchl, orshl,y  —oqcl,; o180, —opch0,y —opsh0,, | 4r+1
—061/11.5‘0,,1 —061/11(36,-1 agizsé),.g Otz/lzc‘he,-z 0{1/11.5‘0,1 oclich,l —oclezshﬁ,.z —Otz)uzcheyz 4r + 2
(A.S)
0,1 = A1x,, 0, =Ax,, s0,4=sin0,, 0,4 =cos0,, shO,=sinh0,,, chl,, =cosh 0,,
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